Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA) and Its Phase I and II Metabolites in Humans.

نویسندگان

  • Andrea E Steuer
  • Corina Schmidhauser
  • Eva H Tingelhoff
  • Yasmin Schmid
  • Anna Rickli
  • Thomas Kraemer
  • Matthias E Liechti
چکیده

3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development and validation of an LC-MS/MS method after chiral derivatization for the simultaneous stereoselective determination of methylenedioxy-methamphetamine (MDMA) and its phase I and II metabolites in human blood plasma.

3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a racemic drug of abuse and its two enantiomers are known to differ in their dose-response curves. The S-enantiomer was shown to be eliminated at a higher rate than the R-enantiomer. The most likely explanation for this is a stereoselective metabolism also claimed in in vitro studies. Urinary excretion studies showed that the main metabolites...

متن کامل

Differential roles of phase I and phase II enzymes in 3,4-methylendioxymethamphetamine-induced cytotoxicity.

Metabolism plays an important role in the toxic effects caused by 3,4-methylenedioxymethamphetamine (MDMA). Most research has focused on the involvement of CYP2D6 enzyme in MDMA bioactivation, and less is known about the contribution of other cytochrome P450 (P450) and phase II metabolism. In this study, we researched the differential roles of phase I P450 enzymes CYP1A2, CYP3A4, and CYP2D6 and...

متن کامل

Inhibitory metabolite complex formation of methylenedioxymethamphetamine with rat and human cytochrome P450. Particular involvement of CYP 2D.

Methylenedioxymethamphetamine (MDMA or ecstasy) is a common recreational drug used at rave parties. Unfortunately, MDMA may have neurological effects and in some cases causes hepatotoxicity. MDMA binds to cytochrome P450 in rat and human hepatic microsomal preparations. Upon metabolic transformation of either the methylenedioxy or the methylamino function, it forms an inhibitory P450-metabolite...

متن کامل

Gender Dependency in Streoselective Pharmacokinetics of Tramadol and Its Phase I Metabolites in Relation to CYP2D6 Phenotype in Iranian Population

The stereoselective pharmacokinetic of Tramadol (T) and its main metabolites concerning the influence of CYP2D6 phenotype and gender on the phase I metabolism of this compound was studied after administration of 100 mg single oral dose of racemic T to 24 male and female subjects. The pharmacokinetic parameters were estimated from plasma concentrations of the analytes enantiomers. The metabolic ...

متن کامل

Gender Dependency in Streoselective Pharmacokinetics of Tramadol and Its Phase I Metabolites in Relation to CYP2D6 Phenotype in Iranian Population

The stereoselective pharmacokinetic of Tramadol (T) and its main metabolites concerning the influence of CYP2D6 phenotype and gender on the phase I metabolism of this compound was studied after administration of 100 mg single oral dose of racemic T to 24 male and female subjects. The pharmacokinetic parameters were estimated from plasma concentrations of the analytes enantiomers. The metabolic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PloS one

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2016